
PROPOSITIONAL LOGIC AS A FORMAL LANGUAGE  

We were deliberately informal about that, for our main focus was on trying to understand the 

precise mechanics of the natural deduction rules. However, it should have been clear that the rules 

we stated are valid for any formulas we can form, as long as they match the pattern required by 

the respective rule. For example 

the application of the proof rule →e in 

1 p → q premise 

2 p premise 

3 q →e 1, 2 

is equally valid if we substitute p with p ∨ ¬r and q with r → p: 

1 p ∨ ¬r → (r → p) premise 

2 p ∨ ¬r premise 

3 r → p →e 1, 2 

This is why we expressed such rules as schemes with Greek symbols standing for generic formulas. 

Yet, it is time that we make precise the notion of ‘any formula we may form.’ Because this text 

concerns various logics, we will introduce in (1.3) an easy formalism for specifying well-formed 

formulas. In general, we need an unbounded supply of propositional atoms p, q, r,..., or p1, p2, 

p3,... You should not be too worried about the need for infinitely many such symbols. Although 

we may only need finitely many of these propositions to describe a property of a computer program 

successfully, we cannot specify how many such atomic propositions we will need in any concrete 

situation, so having infinitely many symbols at our disposal is a cheap way out. This can be 

compared with the potentially infinite nature of English: the number of grammatically correct 

English sentences is infinite, but finitely many such sentences will do in whatever situation you 

might be in (writing a book, attending a lecture, listening to the radio, having a dinner date, . . . ). 

Formulas in our propositional logic should certainly be strings over the alphabet {p, q, r,... }∪{p1, 

p2, p3,... } ∪ {¬,∧,∨, →,(,)}. This is a trivial observation and as such is not good enough for what 

we are trying to capture. 

For example, the string (¬)() ∨ pq → is a word over that alphabet, yet, it does not seem to make a 

lot of sense as far as propositional logic is concerned. So what we have to define are those strings 

which we want to call formulas. We call such formulas well-formed. 


